• usp_easy_retunsاسترجاع مجاني وسهل
  • usp_best_dealsأفضل العروض

Applied Supervised Learning with Python

179.00
شامل ضريبة القيمة المضافة
nudge icon
توصيل مجاني
nudge icon
توصيل مجاني
noon-marketplace
احصل عليه خلال 28 يونيو - 1 يوليو
اطلب في غضون 7 ساعة 57 دقيقة
VIP ENBD Credit Card

التوصيل 
بواسطة نوون
التوصيل بواسطة نوون
البائع ذو
 تقييم عالي
البائع ذو تقييم عالي
الدفع 
عند الاستلام
الدفع عند الاستلام
عملية 
تحويل آمنة
عملية تحويل آمنة
نظرة عامة على المنتج
المواصفات
الناشرPackt Publishing
رقم الكتاب المعياري الدولي 139781789954920
رقم الكتاب المعياري الدولي 101789954924
الكاتبBenjamin Johnston
اللغةEnglish
وصف الكتابExplore the exciting world of machine learning with the fastest growing technology in the worldKey FeaturesUnderstand various machine learning concepts with real-world examplesImplement a supervised machine learning pipeline from data ingestion to validationGain insights into how you can use machine learning in everyday lifeBook DescriptionMachine learning―the ability of a machine to give right answers based on input data―has revolutionized the way we do business. Applied Supervised Learning with Python provides a rich understanding of how you can apply machine learning techniques in your data science projects using Python. You'll explore Jupyter Notebooks, the technology used commonly in academic and commercial circles with in-line code running support.With the help of fun examples, you'll gain experience working on the Python machine learning toolkit―from performing basic data cleaning and processing to working with a range of regression and classification algorithms. Once you’ve grasped the basics, you'll learn how to build and train your own models using advanced techniques such as decision trees, ensemble modeling, validation, and error metrics. You'll also learn data visualization techniques using powerful Python libraries such as Matplotlib and Seaborn. This book also covers ensemble modeling and random forest classifiers along with other methods for combining results from multiple models, and concludes by delving into cross-validation to test your algorithm and check how well the model works on unseen data.By the end of this book, you'll be equipped to not only work with machine learning algorithms, but also be able to create some of your own!What you will learnUnderstand the concept of supervised learning and its applicationsImplement common supervised learning algorithms using machine learning Python librariesValidate models using the k-fold techniqueBuild your models with decision trees to get results effortlesslyUse ensemble modeling techniques to improve the performance of your modelApply a variety of metrics to compare machine learning modelsWho this book is forApplied Supervised Learning with Python is for you if you want to gain a solid understanding of machine learning using Python. It'll help if you to have some experience in any functional or object-oriented language and a basic understanding of Python libraries and expressions, such as arrays and dictionaries.
عن المؤلفBenjamin Johnston is a senior data scientist for one of the world's leading data-driven medtech companies and is involved in the development of innovative digital solutions throughout the entire product development pathway, from problem definition, to solution research and development, through to final deployment. He is currently completing his PhD in machine learning, specializing in image processing and deep convolutional neural networks. He has more than 10 years' experience in medical device design and development, working in a variety of technical roles and holds first-class honors bachelor's degrees in both engineering and medical science from the University of Sydney, Australia.Ishita Mathur has worked as a data scientist for 2.5 years with product-based start-ups working with business concerns in various domains and formulating them as technical problems that can be solved using data and machine learning. Her current work at GO-JEK involves the end-to-end development of machine learning projects, by working as part of a product team on defining, prototyping, and implementing data science models within the product. She completed her masters' degree in high-performance computing with data science at the University of Edinburgh, UK, and her bachelor's degree with honors in physics at St. Stephen's College, Delhi.
تاريخ النشر25 April 2019
عدد الصفحات404 pages
مجموع السلة  179.00

نحن دائماً جاهزون لمساعدتك

تواصل معنا من خلال أي من قنوات الدعم التالية:

تسوق أينما كنت

App StoreGoogle PlayHuawei App Gallery

تواصل معنا

mastercardvisatabbytamaraamexcod