• usp_easy_retunsاسترجاع مجاني وسهل
  • usp_best_dealsأفضل العروض
placeholder
مقدمة إلى التعلم الآلي باستخدام بايثون: دليل لعلماء البيانات
magnifyZoom

مقدمة إلى التعلم الآلي باستخدام بايثون: دليل لعلماء البيانات

211.00
359.15
خصم 41%
nudge icon
توصيل مجاني
nudge icon
توصيل مجاني
noon-marketplace
احصل عليه خلال 26 - 30 يوليو
اطلب في غضون 15 ساعة 56 دقيقة

خصم على الدفع

نظرة عامة على المنتج

المواصفات

الناشرO'Reilly Media, Inc, USA
رقم الكتاب المعياري الدولي 101449369413
اللغةالإنجليزية
وصف الكتابMachine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you'll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills
تاريخ النشر21 October 2016
رقم الكتاب المعياري الدولي 139781449369415
تنسيق الكتابغلاف ورقي
العنوان الفرعي للكتابA Guide For Data Scientists
عن المؤلفIn the last four years, he has been maintainer and one of the core contributor of scikit-learn, a machine learning toolkit widely used in industry and academia, and author and contributor to several other widely used machine learning packages. His mission is to create open tools to lower the barrier of entry for machine learning applications, promote reproducible science and democratize the access to high-quality machine learning algorithms. Sarah is a data scientist who has spent a lot of time working in start-ups. She loves Python, machine learning, large quantities of data, and the tech world. She is an accomplished conference speaker, currently resides in New York City, and attended the University of Michigan for grad school.
عدد الصفحات392
مجموع السلة  211.00
placeholder
مقدمة إلى التعلم الآلي باستخدام بايثون: دليل لعلماء البيانات
مقدمة إلى التعلم الآلي باستخدام بايثون: دليل لعلماء البيانات
211.00
35941%
0

نحن دائماً جاهزون لمساعدتك

تواصل معنا من خلال أي من قنوات الدعم التالية:

تسوق أينما كنت

App StoreGoogle PlayHuawei App Gallery

تواصل معنا

mastercardvisatabbytamaraamexcod