• usp_easy_retunsاسترجاع مجاني وسهل
  • usp_best_dealsأفضل العروض

Math and Architectures of Deep Learning

303.00
شامل ضريبة القيمة المضافة
nudge icon
توصيل مجاني
nudge icon
باقي 5 وحدات في المخزون
nudge icon
توصيل مجاني
noon-marketplace
احصل عليه خلال 28 - 31 مايو
اطلب في غضون 8 ساعة 39 دقيقة
VIP ENBD Credit Card

التوصيل 
بواسطة نوون
التوصيل بواسطة نوون
البائع ذو
 تقييم عالي
البائع ذو تقييم عالي
الدفع 
عند الاستلام
الدفع عند الاستلام
عملية 
تحويل آمنة
عملية تحويل آمنة
نظرة عامة على المنتج
المواصفات
الناشرPearson Education
رقم الكتاب المعياري الدولي 139781617296482
رقم الكتاب المعياري الدولي 101617296481
الكاتبKrishnendu Chaudhury
تنسيق الكتابPaperback
اللغةEnglish
وصف الكتابThe mathematical paradigms that underlie deep learning typically start out as hard-to-read academic papers, often leaving engineers in the dark about how their models actually function.  Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. Written by deep learning expert Krishnendu Chaudhury, you'll peer inside the “black box” to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. about the technology It's important to understand how your deep learning models work, both so that you can maintain them efficiently and explain them to other stakeholders. Learning mathematical foundations and neural network architecture can be challenging, but the payoff is big. You'll be free from blind reliance on pre-packaged DL models and able to build, customize, and re-architect for your specific needs. And when things go wrong, you'll be glad you can quickly identify and fix problems. about the book Math and Architectures of Deep Learning sets out the foundations of DL in a way that's both useful and accessible to working practitioners. Each chapter explores a new fundamental DL concept or architectural pattern, explaining the underpinning mathematics and demonstrating how they work in practice with well-annotated Python code. You'll start with a primer of basic algebra, calculus, and statistics, working your way up to state-of-the-art DL paradigms taken from the latest research. By the time you're done, you'll have a combined theoretical insight and practical skills to identify and implement DL architecture for almost any real-world challenge.
تاريخ النشر20240315
عدد الصفحات450
مجموع السلة  303.00

نحن دائماً جاهزون لمساعدتك

تواصل معنا من خلال أي من قنوات الدعم التالية:

تسوق أينما كنت

App StoreGoogle PlayHuawei App Gallery

تواصل معنا

mastercardvisatabbytamaraamexcod