• usp_easy_retunsاسترجاع مجاني وسهل
  • usp_best_dealsأفضل العروض
placeholder
Vision-Based Lane Detection and Tracking Algorithm
placeholder
Vision-Based Lane Detection and Tracking Algorithm
magnifyZoom

Vision-Based Lane Detection and Tracking Algorithm

227.00
nudge icon
توصيل مجاني
nudge icon
توصيل مجاني
noon-marketplace
احصل عليه خلال 18 يوليو
اطلب في غضون 12 ساعة 45 دقيقة

خصم على الدفع

نظرة عامة على المنتج

المواصفات

الناشر3639213912
رقم الكتاب المعياري الدولي 109783639213911
اللغةEnglish
تاريخ النشر13 November 2009
رقم الكتاب المعياري الدولي 139783639213911
الكاتبYue Wang
وصف الكتابThis book is about a research work on Lane Detection and Tracking Using B-snake for Autonomous Guided Vehicle. The reviews on the existing lane detection techniques are presented. A novel B-snake based lane model which describes the perspective effect of parallel lines is constructed with dual external forces for generic lane boundary or marking, it is able to describe a wider range of lane structures than other lane models such as straight and parabolic models. A robust algorithm called Canny/Hough Estimation of Vanishing Points is presented for providing a good initial position for the B-snake lane model. This algorithm is robust to noises, shadows, and illumination variations in the captured road images, and is also applicable to both the marked and the unmarked, dash paint line and solid paint line roads. A minimum energy method called MMSE (Minimum Mean Square Error) is presented to determine the parameters of road model iteratively. Road tracking is carried on after successful lane detection, by a simple external force field and MMSE method, tracking is efficient and results are good.
عدد الصفحات140 pages
مجموع السلة  227.00
placeholder
Vision-Based Lane Detection and Tracking Algorithm
Vision-Based Lane Detection and Tracking Algorithm
227.00
227
0

نحن دائماً جاهزون لمساعدتك

تواصل معنا من خلال أي من قنوات الدعم التالية:

تسوق أينما كنت

App StoreGoogle PlayHuawei App Gallery

تواصل معنا

mastercardvisatabbytamaraamexcod