• usp_easy_retunsاسترجاع مجاني وسهل
  • usp_best_dealsأفضل العروض
placeholder
كتاب طبخ تحليل السلاسل الزمنية باستخدام بايثون
magnifyZoom

كتاب طبخ تحليل السلاسل الزمنية باستخدام بايثون

260.00
263.00
nudge icon
توصيل مجاني
nudge icon
توصيل مجاني
noon-express
احصل عليه خلال 23 يوليو
اطلب في غضون 21 ساعة 8 دقيقة

خصم على الدفع

نظرة عامة على المنتج

الميزات الأساسية

  • Packt Publishing Limited
  • Atwan, Tarek A.
  • Time Series Analysis with Python Cookbook: Practical recipes for exploratory data analysis, data pre

المواصفات

الناشرPackt Publishing
رقم الكتاب المعياري الدولي 101801075549
تنسيق الكتابPaperback
وصف الكتابPerform time series analysis and forecasting confidently with this Python code bank and reference manualKey Features: Explore forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithmsLearn different techniques for evaluating, diagnosing, and optimizing your modelsWork with a variety of complex data with trends, multiple seasonal patterns, and irregularitiesBook Description: Time series data is everywhere, available at a high frequency and volume. It is complex and can contain noise, irregularities, and multiple patterns, making it crucial to be well-versed with the techniques covered in this book for data preparation, analysis, and forecasting.This book covers practical techniques for working with time series data, starting with ingesting time series data from various sources and formats, whether in private cloud storage, relational databases, non-relational databases, or specialized time series databases such as InfluxDB. Next, you'll learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods, followed by more advanced unsupervised ML models. The book will also explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR. The recipes will present practical techniques for handling non-stationary data, using power transforms, ACF and PACF plots, and decomposing time series data with multiple seasonal patterns. Later, you'll work with ML and DL models using TensorFlow and PyTorch.Finally, you'll learn how to evaluate, compare, optimize models, and more using the recipes covered in the book.What You Will Learn: Understand what makes time series data different from other dataApply various imputation and interpolation strategies for missing dataImplement different models for univariate and multivariate time seriesUse different deep learning libraries such as TensorFlow, Keras, and PyTorchPlot interactive time series visualizations using hvPlotExplore state-space models and the unobserved components model (UCM)Detect anomalies using statistical and machine learning methodsForecast complex time series with multiple seasonal patternsWho this book is for: This book is for data analysts, business analysts, data scientists, data engineers, or Python developers who want practical Python recipes for time series analysis and forecasting techniques. Fundamental knowledge of Python programming is required. Although having a basic math and statistics background will be beneficial, it is not necessary. Prior experience working with time series data to solve business problems will also help you to better utilize and apply the different recipes in this book.
تاريخ النشر30 June 2022
رقم الكتاب المعياري الدولي 139781801075541
الكاتبTarek A Atwan
اللغةEnglish
عن المؤلفTarek A. Atwan is a data analytics expert with over 16 years of international consulting experience, providing subject matter expertise in data science, machine learning operations, data engineering, and business intelligence. He has taught multiple hands-on coding boot camps, courses, and workshops on various topics, including data science, data visualization, Python programming, time series forecasting, and blockchain at different universities in the United States. He is regarded as an industry mentor and advisor, working with executive leaders in various industries to solve complex problems using a data-driven approach.
عدد الصفحات630 pages
مجموع السلة  260.00
placeholder
كتاب طبخ تحليل السلاسل الزمنية باستخدام بايثون
كتاب طبخ تحليل السلاسل الزمنية باستخدام بايثون
260.00
263
0

نحن دائماً جاهزون لمساعدتك

تواصل معنا من خلال أي من قنوات الدعم التالية:

تسوق أينما كنت

App StoreGoogle PlayHuawei App Gallery

تواصل معنا

mastercardvisatabbytamaraamexcod