• usp_easy_retunsFree & Easy Returns
  • usp_best_dealsBest Deals

Deep Learning on Graphs

292.00
Inclusive of VAT
nudge icon
Free Delivery
nudge icon
Only 4 left in stock
nudge icon
Free Delivery
noon-marketplace
Get it by 29 May - 3 June
Order in 1 h 0 m
VIP ENBD Credit Card

Delivery 
by noon
Delivery by noon
High Rated
Seller
High Rated Seller
Cash on 
Delivery
Cash on Delivery
Secure
Transaction
Secure Transaction
Product Overview
Specifications
PublisherCambridge University Press
ISBN 139781108831741
ISBN 101108831745
AuthorYao Ma
Book FormatHardcover
LanguageEnglish
Book DescriptionDeep learning on graphs has become one of the hottest topics in machine learning. The book consists of four parts to best accommodate our readers with diverse backgrounds and purposes of reading. Part 1 introduces basic concepts of graphs and deep learning; Part 2 discusses the most established methods from the basic to advanced settings; Part 3 presents the most typical applications including natural language processing, computer vision, data mining, biochemistry and healthcare; and Part 4 describes advances of methods and applications that tend to be important and promising for future research. The book is self-contained, making it accessible to a broader range of readers including (1) senior undergraduate and graduate students; (2) practitioners and project managers who want to adopt graph neural networks into their products and platforms; and (3) researchers without a computer science background who want to use graph neural networks to advance their disciplines.
About the AuthorYao Ma is a PhD student of the Department of Computer Science and Engineering at Michigan State University (MSU). He is the recipient of the Outstanding Graduate Student Award and FAST Fellowship at MSU. He has published papers in top conferences such as WSDM, ICDM, SDM, WWW, IJCAI, SIGIR and KDD, which have been cited hundreds of times. He is the leading organizer and presenter of tutorials on GNNs at AAAI'20, KDD'20 and AAAI'21, which received huge attention and wide acclaim. He has served as Program Committee Members/Reviewers in many well-known conferences and magazines such as AAAI, BigData, IJCAI, TWEB, TKDD and TPAMI.Jiliang Tang is Assistant Professor in the Department of Computer Science and Engineering at Michigan State University. Previously, he was a research scientist in Yahoo Research. He received the 2020 SIGKDD Rising Star Award, 2020 Distinguished Withrow Research Award, 2019 NSF Career Award, the 2019 IJCAI Early Career Invited Talk and 7 best paper (runnerup) awards. He has organized top data science conferences including KDD, WSDM and SDM, and is associate editor of the TKDD journal. His research has been published in highly ranked journals and top conferences, and received more than 12,000 citations with h-index 55 and extensive media coverage.
Publication Date2021-09-23
Number of Pages400 pages
Cart Total  292.00

We're Always Here To Help

Reach out to us through any of these support channels

Shop On The Go

App StoreGoogle PlayHuawei App Gallery

Connect With Us

mastercardvisatabbytamaraamexcod