• usp_easy_retunsFree & Easy Returns
  • usp_best_dealsBest Deals

Demystifying Big Data and Machine Learning for Healthcare

384.00
Inclusive of VAT
nudge icon
Free Delivery
nudge icon
Only 1 left in stock
nudge icon
Free Delivery
noon-express
Get it Tomorrow
Order in 10 h 25 m
VIP ENBD Credit Card

Delivery 
by noon
Delivery by noon
High Rated
Seller
High Rated Seller
Cash on 
Delivery
Cash on Delivery
Secure
Transaction
Secure Transaction
placeholder
https://affiliates.noon.com/en
Product Overview
Specifications
PublisherTaylor & Francis
ISBN 139781138032637
AuthorDetlev H. Smaltz
Book FormatHardcover
LanguageEnglish
Book DescriptionHealthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it.Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.
Publication Date20170127
Number of Pages210
Cart Total  384.00

We're Always Here To Help

Reach out to us through any of these support channels

Shop On The Go

App StoreGoogle PlayHuawei App Gallery

Connect With Us

mastercardvisatabbytamaraamexcod