• usp_easy_retunsاسترجاع مجاني وسهل
  • usp_best_dealsأفضل العروض

Hands-On Differential Privacy: Introduction to the Theory and Practice Using Opendp

480.00
شامل ضريبة القيمة المضافة
nudge icon
باقي 2 وحدات في المخزون
nudge icon
باقي 2 وحدات في المخزون
noon-marketplace
احصل عليه خلال 7 يونيو
اطلب في غضون 10 ساعة 22 دقيقة
التوصيل 
بواسطة نوون
التوصيل بواسطة نوون
الدفع 
عند الاستلام
الدفع عند الاستلام
عملية 
تحويل آمنة
عملية تحويل آمنة
placeholder
/alinma-bank
نظرة عامة على المنتج
المواصفات
الناشرO'Reilly Media
رقم الكتاب المعياري الدولي 139781492097747
رقم الكتاب المعياري الدولي 101492097748
الكاتبEthan Cowan
تنسيق الكتابPaperback
اللغةEnglish
وصف الكتابMany organizations today analyze and share large, sensitive datasets about individuals. Whether these datasets cover healthcare details, financial records, or exam scores, it's become more difficult for organizations to protect an individual's information through deidentification, anonymization, and other traditional statistical disclosure limitation techniques. This practical book explains how differential privacy (DP) can help. Authors Ethan Cowan, Michael Shoemate, and Mayana Pereira explain how these techniques enable data scientists, researchers, and programmers to run statistical analyses that hide the contribution of any single individual. You'll dive into basic DP concepts and understand how to use open source tools to create differentially private statistics, explore how to assess the utility/privacy trade-offs, and learn how to integrate differential privacy into workflows. With this book, you'll learn: How DP guarantees privacy when other data anonymization methods don't What preserving individual privacy in a dataset entails How to apply DP in several real-world scenarios and datasets Potential privacy attack methods, including what it means to perform a reidentification attack How to use the OpenDP library in privacy-preserving data releases How to interpret guarantees provided by specific DP data releases
عن المؤلفEthan Cowan worked on software and research topics as part of the OpenDP team from 2020 to 2022. In particular, he focused on privatizing machine learning models and developing platforms for analyzing sensitive data with built-in differential privacy. Ethan now studies the history and ethics of emerging technology.Michael Shoemate is the architect for the OpenDP Library, a widely used open source library for differential privacy. His work involves collaborating with researchers to adapt differentially private methods into trustworthy and accessible software tools, and communicating how these tools can be used.Mayana Pereira works on applying machine learning and privacy-preserving techniques to a diverse range of practical problems at Microsoft's AI for Good Team. Mayana is also an active collaborator of OpenDP, an open source project for the differential privacy community to develop general-purpose, vetted, usable, and scalable tools for differential privacy.
تاريخ النشر2024-06-25
عدد الصفحات360 pages
مجموع السلة  480.00

نحن دائماً جاهزون لمساعدتك

تواصل معنا من خلال أي من قنوات الدعم التالية:

تسوق أينما كنت

App StoreGoogle PlayHuawei App Gallery

تواصل معنا

madamastercardvisatabbytamaraamexcod
شركة حلول نون للتسويق الالكتروني شركة شخص واحد ش.ذ.م.م1010703009 السجل التجاري302004655210003 الرقم الضريبي