• usp_easy_retunsFree & Easy Returns
  • usp_best_dealsBest Deals
placeholder
Deep Learning with Keras: Implementing deep learning models and neural networks with the power of Python
magnifyZoom

Deep Learning with Keras: Implementing deep learning models and neural networks with the power of Python

230.00
237.00
nudge icon
Free Delivery
nudge icon
Free Delivery
noon-marketplace
Get it by 7 Nov
Order in 8h19m

Payment discount

Product Overview

Specifications

PublisherPackt Publishing
ISBN 101787128423
Book DescriptionPublisher's Note: This edition from 2017 is outdated and is not compatible with TensorFlow 2 or any of the most recent updates to Python libraries. A new second edition, updated for 2020 and featuring TensorFlow 2, the Keras API, CNNs, GANs, RNNs, NLP, and AutoML, has now been published.Key Features: Implement various deep learning algorithms in Keras and see how deep learning can be used in gamesSee how various deep learning models and practical use-cases can be implemented using KerasA practical, hands-on guide with real-world examples to give you a strong foundation in KerasBook Description: This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided.Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer.Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.What You Will Learn: Optimize step-by-step functions on a large neural network using the Backpropagation algorithmFine-tune a neural network to improve the quality of resultsUse deep learning for image and audio processingUse Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special casesIdentify problems for which Recurrent Neural Network (RNN) solutions are suitableExplore the process required to implement AutoencodersEvolve a deep neural network using reinforcement learningWho this book is for: If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book.
LanguageEnglish
Number of Pages318 pages
ISBN 139781787128422
About the AuthorAntonio Gulli is the Engineering Director for the Office of the CTO, Google Cloud. Previously, he served as Google Warsaw Site leader doubling the size of the engineering site.
AuthorAntonio Gulli
Publication Date26 April 2017
placeholder
Deep Learning with Keras: Implementing deep learning models and neural networks with the power of Python
Deep Learning with Keras: Implementing deep learning models and neural networks with the power of Python
230.00
237
0

We're Always Here To Help

Reach out to us through any of these support channels

Shop On The Go

App StoreGoogle PlayHuawei App Gallery

Connect With Us

mastercardvisatabbytamaraamexcod