• usp_easy_retunsFree & Easy Returns
  • usp_best_dealsBest Deals
placeholder
Graph Machine Learning: Take graph data to the next level by applying machine learning techniques and algorithms
placeholder
Graph Machine Learning: Take graph data to the next level by applying machine learning techniques and algorithms
placeholder
Graph Machine Learning: Take graph data to the next level by applying machine learning techniques and algorithms
placeholder
Graph Machine Learning: Take graph data to the next level by applying machine learning techniques and algorithms
placeholder
Graph Machine Learning: Take graph data to the next level by applying machine learning techniques and algorithms
magnifyZoom

Graph Machine Learning: Take graph data to the next level by applying machine learning techniques and algorithms

234.00
nudge icon
Free Delivery
nudge icon
Free Delivery
noon-marketplace
Get it by 12 Nov
Order in 18h29m

Payment discount

Product Overview

Specifications

PublisherPackt Publishing
ISBN 101800204493
Book DescriptionBuild machine learning algorithms using graph data and efficiently exploit topological information within your modelsKey Features: Implement machine learning techniques and algorithms in graph dataIdentify the relationship between nodes in order to make better business decisionsApply graph-based machine learning methods to solve real-life problemsBook Description: Graph Machine Learning will introduce you to a set of tools used for processing network data and leveraging the power of the relation between entities that can be used for predictive, modeling, and analytics tasks.The first chapters will introduce you to graph theory and graph machine learning, as well as the scope of their potential use.You'll then learn all you need to know about the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data.After covering the basics, you'll be taken through real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. You'll also learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, and explore the latest trends on graphs.By the end of this machine learning book, you will have learned essential concepts of graph theory and all the algorithms and techniques used to build successful machine learning applications.What You Will Learn: Write Python scripts to extract features from graphsDistinguish between the main graph representation learning techniquesLearn how to extract data from social networks, financial transaction systems, for text analysis, and moreImplement the main unsupervised and supervised graph embedding techniquesGet to grips with shallow embedding methods, graph neural networks, graph regularization methods, and moreDeploy and scale out your application seamlesslyWho this book is for: This book is for data scientists, data analysts, graph analysts, and graph professionals who want to leverage the information embedded in the connections and relations between data points to boost their analysis and model performance using machine learning. It will also be useful for machine learning developers or anyone who wants to build ML-driven graph databases. A beginner-level understanding of graph databases and graph data is required, alongside a solid understanding of ML basics. You'll also need intermediate-level Python programming knowledge to get started with this book.
Book FormatPaperback
Publication Date25 June 2021
ISBN 139781800204492
About the AuthorClaudio Stamile received an M.Sc. degree in computer science from the University of Calabria (Cosenza, Italy) in September 2013 and, in September 2017, he received his joint Ph.D. from KU Leuven (Leuven, Belgium) and Université Claude Bernard Lyon 1 (Lyon, France). During his career, he has developed a solid background in artificial intelligence, graph theory, and machine learning, with a focus on the biomedical field. He is currently a senior data scientist in CGnal, a consulting firm fully committed to helping its top-tier clients implement data-driven strategies and build AI-powered solutions to promote efficiency and support new business models.Aldo Marzullo received an M.Sc. degree in computer science from the University of Calabria (Cosenza, Italy) in September 2016. During his studies, he developed a solid background in several areas, including algorithm design, graph theory, and machine learning. In January 2020, he received his joint Ph.D. from the University of Calabria and Université Claude Bernard Lyon 1 (Lyon, France), with a thesis entitled Deep Learning and Graph Theory for Brain Connectivity Analysis in Multiple Sclerosis. He is currently a postdoctoral researcher at the University of Calabria and collaborates with several international institutions.Enrico Deusebio is currently the chief operating officer at CGnal, a consulting firm that helps its top-tier clients implement data-driven strategies and build AI-powered solutions. He has been working with data and large-scale simulations using high-performance facilities and large-scale computing centers for over 10 years, both in an academic and industrial context. He has collaborated and worked with top-tier universities, such as the University of Cambridge, the University of Turin, and the Royal Institute of Technology (KTH) in Stockholm, where he obtained a Ph.D. in 2014. He also holds B.Sc. and M.Sc. degrees in aerospace engineering from Politecnico di Torino.
AuthorClaudio Stamile
LanguageEnglish
Number of Pages338 pages
placeholder
Graph Machine Learning: Take graph data to the next level by applying machine learning techniques and algorithms
Graph Machine Learning: Take graph data to the next level by applying machine learning techniques and algorithms
234.00
0

We're Always Here To Help

Reach out to us through any of these support channels

Shop On The Go

App StoreGoogle PlayHuawei App Gallery

Connect With Us

mastercardvisatabbytamaraamexcod